Hyperspectral Dimensionality Reduction of Forest Types Based on Cat Swarm Algorithm
نویسندگان
چکیده
One of the main ways of dimensionality reduction of hyperspectral image was band selection. The paper proposed a hyperspectral image bands selection method based on binary cat swarm algorithm to solve problems of the high complexity and intensive computation efficiently for follow-up applied research. In this paper, Jilin Wangqing Forestry Bureau was chosen as the study area, by optimization process of the cats’ location electing, less associated and more informative bands were selected from 115 bands of HJ-1A, band combination (22,37,109), to distinguish 5 kinds of dominant tree species and get better classification accuracy.
منابع مشابه
Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملانجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...
متن کاملParticle Swarm Optimization (PSO) based approach for Classification of Remote Sensing Images
Dimensionality reduction is a major task in remote sensing images. Feature selection is applied for performing dimensionality reduction. It selects the spectral features(i.e. Bands) and find a feature subset that preserves the semantics of the hyperspectral image. Based on particle swarm optimization (PSO), this paper proposes multi-objective functions for selecting the spectral feature subsets...
متن کاملSpatial-Spectral Dimensionality Reduction of Hyperspectral Imagery with Partial Knowledge of Class Labels
Laplacian Eigenmaps (LE) and Schroedinger Eigenmaps (SE) are effective dimensionality reduction algorithms that are capable of integrating both the spatial and spectral information inherent in a hyperspectral image. In this paper, we consider how to extend LEand SE-based spatial-spectral dimensionality reduction algorithms to situations where partial knowledge of class labels exists, for exampl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015